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Abstract: Three different mathematical formulations for the scheduling of pumps to minimize 
energy consumption while still satisfying operational constraints are presented.  Each 
formulation requires the solution of a highly nonlinear optimization problem that requires the 
iterative solution of an external numerical model for evaluating and satisfying the operational 
constraints.  Two different algorithms for solving the problem are examined. 

1 Introduction 

Perhaps one of the most important, yet most widely overlooked components of the urban 
infrastructure in the United States, is the public water supply system.  However, over the last 
several decades and in particular since 9/11, many utilities are beginning to move to the use of 
sophisticated computer technologies to not only provide critical real time information about the 
state of their systems, but also to improve their overall operations.  One such area of focus has 
been in the optimal scheduling of pumps so as to minimize cost and improve operational 
conditions.   

Researchers have been exploring the area of optimal pump operations for several decades 
[11].  In its most general form, the classical non-linear constrained optimization problem as 
applied to pump operations may be formulated as follows: 
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where F(X:q,p) represents the objective function (in terms of cost) to be minimized, q(X) 
represents the explicit system constraints (conservation of mass and energy in terms of flow q),  
and p(X) represents the implicit bound constraints (minimum pressures) to be satisfied.  
Finally, Xmin and Xmax represent explicit bound constraints on the decision variables of the 
optimal control formulation (duration of pump operations).  The system constraints can be 
represented explicitly by the use of a simplified inductive model of the water distribution 
system [15] or a deductive model [10].  The exact form of the objective function and the 
associated decisions variables depend upon the nature of the problem formulation.   

2 System Constraints 

Because of the complexity of the system constraints, they are normally extracted out of the 
formal optimization formation and handled externally through use of a simulation program as 
shown in Figure 1. When using this structure, a vector of decision variables X is selected that 
explicitly satisfies the explicit bound constraints.  This vector is then passed to the simulation 
program where the system constraints are satisfied and a vector of resulting pipe flowrates q 
and junction pressures p are determined.  Once determined these values are passed back to the 
optimization program in order to check for feasibility of the implicit bound constraints (i.e. 
minimum pressures - p), and if feasible, the resulting value of the objective function associated 
with the decision vector X. 

Optimization Model

Simulation Model

MIN:  F(X;q,p)
St: p(x) > 0

X min < X  < X max

q(X) = 0

X p, q

 

Figure 1. Problem Disaggregation Structure 

The system constraints for this type of problem can be illustrated by considering the 
simple pipe distribution system shown in Figure 2.  This system contains two tanks, five pipes, 
three junction nodes and one pump.  The direction of flow in each of the pipes is indicated by 
the arrow on the line segment.  In this case, a typical problem might be to determine the 
operating times of the pumps at the pump station over the course of an operating period (e.g. a 
day) so as to meet the varying demands Mt at junction node 3 while maintaining adequate 
operating pressures at each junction node (which is related to insuring that the water in the tank 
never drops below a critical level).    
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 Figure 2.  Example Pipe Network 

The majority of pumps used in the water industry are constant speed pumps, in which the 
discharge is a function of the water levels in the tank.  During those times in which the pump 
station discharge exceeds Mt, the excess will fill the tank.  During those times in which the 
pump station discharge is less than Mt, then the tank will drain.  The decision of what pumps to 
turn on and how long they should run will be driven by both the nodal demand Mt and the tank 
level (which controls the associated junction pressures).  In many cases, pump stations will 
consist of different size pumps with different flow versus pressure relationships.  Thus, the 
decision of which pump or combination of pumps to run during a particular period can become 
rather complicated.  This is further complicated by the fact that the discharges of multiple 
pumps cannot be simply added together.  Instead, the combined flows are a nonlinear function 
of the energy loss through the system (as determined by a system energy curve) and the 
associated tank level.   For example, consider the situation of two pumps as shown in Figure 3.  
Each pump will have a different discharge versus pressure curve (known as a pump 
characteristic curve) as shown in the accompanying graph.  The actual discharge that a 
particular pump will produce is determined by the intersection point of the characteristic curve 
and the system energy loss curve.  When pump A is operating, the discharge is Qa.  When 
pump B  is operating the discharge is Qb.  However, when both pumps are operating, the 
discharge is Qa+b.  Technically, the system energy loss curve will shift up or down depending 
upon the water level in the tank, so things can become somewhat complicated. 

P

Q

A

B

Tank Full

Tank Empty

System Energy Loss Curves

Pump Characteristic Curves

A+B

A

B

Qa Qb Qa+b  

Figure 3.  Pump Characteristic Curves and System Energy Loss Curves 



The system energy loss curve represents a conceptual approximation of the flow versus 
pressure  relationship that exists in a real water distribution network.  In actual practice, this 
relationship must be determined by solving a series of nonlinear energy equations that are used 
to describe the physics of the system.  For example, if we use the simple system shown in 
figure 2, then we are required to write one energy equation for each loop or energy path that 
exists in the network.  An energy path is simply a path or series of pipes that connect any two 
tanks (technically any two points in the system with a known boundary condition – i.e. water 
level).  For this simple system, the energy equation for the simple loop may be written as: 
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Likewise the energy equation for the path may be written as: 
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where Qi is the flowrate in pipe i, Zp coefficient which is a function of the horsepower of the 
pump, ΔE is the difference in elevation between the water levels of the two tanks, and Ki is an 
energy loss term for each pipe that may be expressed as: 
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where L = the pipe length in feet, D = the pipe diameter in feet, and C = an empirical 
roughness coefficient that depends on pipe age and pipe material (e.g. C = 130 for a new 
ductile iron pipe).  

Since equations 5 and 6 are nonlinear in terms of Q, they cannot be solved directly but 
they may be solved  iteratively using a Taylor’s series approximation.  For our simple system, 
the resulting equations become:  
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If we express equations 8 and 9 in matrix notation, then the set of equations can be written as: 

 
GI (QI)           0

0           GII (QII) 

-FI(QI)

-FII(QII)

ΔQI

ΔQII
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Figure 4.  Matrix structure for simple network example 

 



where GI and FI represents the function on the right hand side and left hand side of  equation 8 
respectively, and QI represents the vector of flows.  Likewise, GII and FII represent the 
functions on the right hand side and left hand side of equation 9 respectively, and QII represents 
the vector of flows.   Reducing further, the equations can now be expressed as: 

}{][ FQG =Δ                                                  (10) 

Thus, for this simple example, each time the simulation model is accessed by the optimization 
model, initial estimates of the flows in each pipe must be generated so that conservation of 
mass is preserved at each junction node (e.g. Q1 – Q2 – Q4 = 0).  Once this is done, the K 
coefficients are determined and substituted into the equations.  Next, flow adjustment factors 
(i.e.ΔQ) are calculated for each loop or path as follows: 

}{][ 1 FGQ −=Δ                                               (11) 

Once these are determined, each of the individual flows in each pipe may be determined 
using a recursive equation.  For example, for pipe 1 the flows are updated as follows: 

 Iii QQQ Δ+=+ 111                                                         (12) 

For pipes that are common to more than one equation (e.g. pipe 2), the recursive equation 
is expressed as follows: 

IIIii QQQQ Δ+Δ+=+ 212                                            (13) 

Once all the flows have been updated, they are then used to update the K coefficients and the 
process is repeated until the ΔQ’s converge to zero. 

It should be recognized that most water distribution systems are much more complicated 
than the simple network shown in Figure 2.   Further, in simulating the performance of such a 
system over time (e.g. a day), the previous solution methodology must be repeated for each 
time step in the simulation. In this case, the flows determined at the beginning of each time 
step are then used to update the boundary conditions for use in solving for the flows at the next 
time step.  In order to minimize the error associated with this type of Euler integration, a 
maximum time step of one hour may be necessary.  When applied to typical water distribution 
system, the computational requirements associated with each “function call” from the 
optimization model can become significant.   

 
3  Objective Function 

The objective of the extended period operation problem is to minimize the total energy 
consumption charges associated with operating a set of pumps over the course of an operating 
horizon, while simultaneously satisfying any service and reliability- related requirements of the 
system.  In a typical water distribution system, the energy consumption costs incurred by 
pumping water depends mainly on the rate at which water is pumped, the associated pump 
head, the duration of pumping, the unit cost of electricity, and the different combined 
efficiencies of various pump combinations.  Mathematically the objective function may be 
expressed as: 
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where: Z = the total energy cost to be minimized ($) 

 Qt,i  = the average flowrate associated with pump i during time t (cfs) 

Ht,i  = the average head  associated with pump i during time t (ft) 

note: the term “head” is a common term in pump hydraulics used to express 
pressure in terms of an equivalent height of water.       

Xt,i  = the duration of the time pump i is operating during interval t (hr) 

 et,i = the average wire to water efficiency associated with pump i during time t 

Rt = the electric rate during time t ($/Kw-hr) 

γ = the specific weight of water (lb/ft3) 

I = the total number of pumps included in the optimization 

T = the total number of time intervals in the operating horizon 

For a given network configuration and an associated set of initial boundary conditions 
(including the vector of initial tank levels E and the vector of system demand loadings M), the 
average discharge Qi, pump head Hi, and pump efficiency ei, associated with a particular pump 
i can be expressed as a function of the characteristics of the pump itself plus the characteristics 
of another pump which may be operating during the same time periods as pump i.  Since the 
set of pumps operating during a particular period, t, can be explicitly defined by the duration of 
time each pump in the set is operating, (i.e. if Xt,i = 0 then pump i is not operating during time 
period t and if Xt,i > 0 then the pump is operating during period t), then the pump discharge, the 
pump head, and the pump efficiency can be expressed as implicit functions of the vector of 
total pump durations for a particular time interval [12].  As a result, equation 14 may now be 
expressed as: 
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As a result, the objective function can be expressed solely in terms of the vector of the 
individual pump operating times.  As will be discussed in the following sections, the exact 
nature of the pump operating times will be dependent upon the problem formulation. 

2  Implicit Scheduling Formulation 

Historically, the optimal pump scheduling problem has been either formulated as an implicit 
control problem or an explicit control problem.  In the implicit formulation, pump station 
discharge, supply pressure, or tank water levels are treated as the decision variables of the 
optimal control problem.  In the explicit formulation, the actual pump operating times (either 
individually or compositely) are treated as the decision variables. 



The implicit formulation will typically require the solution of two sub-problems. The first 
sub-problem involves determining an optimal decision trajectory.  The optimal decision 
trajectory can be defined as that series of pump station discharges, supply pressures, or tank 
water levels which, over the course of the operating horizon, result in a minimal total operating 
cost.  

The second sub-problem involves determining the specific pump operations which 
produce the optimal decision trajectory.  The difficulty associated with finding specific pump 
combinations is compounded by the fact that many combinations capable of producing the 
desired decision trajectory may exist.  Furthermore, from all the possible combinations capable 
of producing the desired trajectory, the combination which results in minimal operating costs 
must be found.   

Historically, the implicit approach has been used to develop control strategies for single 
tank systems.  In such cases, the tank water level has been used as the implicit decision 
variable and the resulting formulation is typically solved using dynamic programming [7], [8], 
[13], [16].  Due to the curse of dimensionality, dynamic programming solutions are normally 
restricted to problems involving no more than three storage tanks.  For systems with several 
tanks, researchers have either employed dynamic programming along with an associated site 
specific spatial decomposition scheme [3], [21] or nonlinear programming along with an 
alternative implicit decision variable [9]. 

3 Discrete Explicit Pump Scheduling 

In the discrete explicit approach, the actual times of the operation of each pump are treated as 
the decision variables [6], [14].  In this case, the objective function may be characterized in 
terms of operational costs and the associated state variables (such as flow or pressure) can then 
be modeled using a much more robust model of the water distribution system that can be 
linked to the optimization algorithm via iterative subroutine calls [19]. 

3.1 Restricted Formulation. 

The restricted formulation of time as a decision variable was originally proposed by Chase and 
Ormsbee [5] and later applied by Chase [4] and Brion [2].  In this approach, a pump is forced 
to begin operating at the beginning of a pre-determined timer interval (e.g. every four hours), 
in effect, restricting the time a pump can begin operating.  The decision variable in this case is 
the duration of time each pump operates during a particular time interval.  For example, 
suppose decision variable X3,2 has a value of 2.50 and a four hour time interval is used.  Under 
the restricted approach, pump 2 would be turned on at the beginning of time interval #3 and 
turned off 2.5 hours into the interval.  In other words if the operating horizon begins at 
midnight, pump 2 would be placed on line at 8:00 a.m. and turned off at 10:30 a.m. The values 
taken on by the decision variables are bounded between 0 (pump off) and Δt (duration of time 
interval).   Figure 5 provides a pictorial representation of the decision variables in the restricted 
approach.   

As can be seen from Figure 5, the total number of decision variables required to solve the 
optimal control problem is equal to the product of the number of pumps and the number of 
time intervals making up the operating horizon.  As the size of the time interval is decreased, 
the closer the problem becomes to one of continuous pump operation.  Unfortunately a 
decrease in the size of the time interval results in a proportional increase in the number of time 
intervals which, in turn, causes an increase in the number of decision variables.  An increase in 



the number of decision variables can be undesirable since the computation time required to 
solve the optimal control problem will increase.   

 
3.2 Unrestricted Formulation.  

 In an effort to reduce the number of decision variables, yet continue to pose the problem 
within the framework of an explicit time model, the restricted formulation can be modified to 
yield an unrestricted formulation.  In the unrestricted formulation, the decision variables 
become the starting and ending time for the pumps.  Figure 6 shows a pictorial representation 
of the decision variables for the unrestricted formulation.  

Unlike the restricted formulation, in the unrestricted formulation there are fewer 
conditions as to when a pump may start or stop.  Instead of forcing a pump to begin operating 
at the start of a particular time interval, pumps are allowed to start operating at any time during 
the operating horizon.  Likewise, instead of shutting down a pump during a given time interval 
perhaps only to have it operating again at the start of the next time step, under the unrestricted 
approach a pump may stop operating at any time during the operating horizon.  Consequently, 
feasible values of the decision variables for the unrestricted approach are bounded between 0 
(pump off) and T where T is the operating horizon, usually 24 hours. 

 
3.3 Discussion of Unrestricted and Restricted Formulations 

A nice feature of the unrestricted approach is that it more closely replicates actual pump 
operation.  In other words, system operators will typically place pumps on line in response to 
certain system parameters such as a low tank level, low pressure, an increase in system 
demands, a fire, etc.  Such changes in system indices and/or system loadings are not likely to 
occur at the start of a pre-defined time interval, unless of course, the time interval is extremely 
small. 

The restricted formulation allows pumps to operate several times per day.  This can be 
accommodated in the unrestricted formulation by increasing the number of decision variables.  
In this case,  a pair of decision variables are associated with each pump duty cycle.  If a pump 
is allowed to operate only once per day, then there is one pump duty cycle per day and the 
number of decision variables is twice the number of pumps, i.e. one decision variable for the 
starting time and one for the ending time.  If all pumps are allowed to operate twice per day, 
then there are two pump duty cycles for each pump.  Following the convention that a pair of 
decision variables is associated with each pump duty cycle, then the total number of decision 
variables would be four times the number of pumps. 
In general, the number of decision variables associated with the unrestricted formulation can be 
found using the following equation: 
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where NDV is the total number of decision variables in the unrestricted explicit formulation, 
DCi, is the number of daily duty cycles allowed for pump i, and I is the number of pumps 
included in the optimization. 

With the unrestricted formulation, additional bound constraints are needed to assure that 
the starting time for a pump is less than the stopping time for the same pump.  If multiple duty 
cycles are allowed, then constraints are needed to insure that the starting time for particular 



pump duty cycle is greater than the stopping time for the pump’s previous duty cycle.  The 
additional constraints required for the unrestricted formulation can be expressed with the 
following equations: 
                                                           i= 1, 2…..I                                   (17)    0>−+ iIi XX

                                                      0,1, <− +− IinIn XX   i= 1, 2……I; n= 2, 3…..DC         (18) 

where  Xi  is the starting time for pump i, Xi+1  is the stopping time for pump i, Xn,i is the 
starting time for pump I for the nth duty cycle, and  Xni+I  is the stopping time for pump i during 
the nth duty cycle.  Such constraints are not necessary for the restricted approach since the 
decision variable is the duration of time a pump operates and since the formulation keeps pump 
operation within a single time interval.  
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Figure 5 Schematic Representation of Decision Variables for the Restricted Approach 
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Figure 6. Schematic Representation of Decision Variables for the Unrestricted Approach 

   

 

 

    

 

 

   

  

 

   



Two separate explicit control formulations have been proposed:  1) a restricted 
formulation and 2) an unrestricted formulation.  Under the restricted formulation, pumps are 
forced to begin operating at the start of a time step and the value of the decision variable is 
equal to the duration of time the pump operates.  Under the unrestricted formulation, pumps are 
allowed to start and stop operating at any time within the operating horizon and the decision 
variables represent the actual starting and stopping times for each pump duty cycle.  With 
respect to the restricted formulation, the unrestricted approach allows more freedom of 
operation and more closely resembles actual pump operation.  However, the unrestricted 
approach requires the use of additional constraints to regulate pump operation within practical 
limits. 

As a result, the addition of new constraints results in a slight modification of the optimal 
control problem originally shown in equations  1-4.  The  modified optimal control problem for 
the explicit formulation may now be expressed as: 
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where all the terms are the same as before and U(X) represent bound constraints used to keep 
pump starting and stopping times within practical limits when using the unrestricted approach. 
If constraints (20) – (23) are included directly in the optimization problem as binding 
constraints, then the result for most real problems would be a large scale nonlinear problem.  
The scale of the problem can be reduced by handling the constraints in the following manner.  
The implicit system constraints, H(X), are solved through the use of a simulation model [20].  
Depending upon the size of the mathematical model describing the water distribution systems, 
accommodating the implicit constraints through the use of a simulation model can substantially 
reduce the number of constraints which would otherwise be solved by the optimization 
algorithm.  The implicit bound constraints, G(X), and the bound constraints associated with the 
unrestricted approach, U(X), can be included in the objective function as a penalty term so as 
to allow solution using an unconstrained optimization method.  Alternatively, depending upon 
the type of solution algorithm employed, they may also be explicitly satisfied outside of the 
algorithm.  Finally, the explicit bound constraints can be used to assign values of decision 
variables when the variables exceed their bounds.  For example, if during the course of the 
optimization a value taken on by a decision variable is greater than the upper bound of the 
variable, Xmax, then the value of the decision variable is set equal to the upper bound.  Similarly 
if a value of a decision variable is less than the lower bound, Xmin, then the value of that 
variable is set equal to its lower bound. 

4 Composite Explicit Pump Scheduling 
 
As discussed previously, the exact form of the decision variable will be dependent upon 
whether a restricted or an unrestricted formulation is employed.  In applying the restricted 



approach, the normal operating horizon (typically 24 hours) is divided in to T separate time 
intervals (e.g. 4 hours) and the pump operating time for each pump in each time interval is 
determined.  In the unrestricted approach, a specific number of pump duty cycles is specified 
for each pump and the beginning and ending times of each duty cycle is determined.  For 
distribution systems with multiple pump stations, and with each pump station containing 
numerous pumps, both formulations can result in an excessive number of decision variables.  
One way to significantly reduce the total number of decision variables would be to develop a 
single decision variable for each pump station for each time interval that relates the particular 
set of pumps in operation during that period.  Such a formulation can be obtained by ordering 
the various available pump combinations associated with each pump station on the basis of unit 
cost.  A single decision variable can then be developed for each pump station s and each time 
interval t of the form Xst = II.CC where II = is an integer and corresponds to the identification 
number of the pump combination that operates CC% percent of the time interval.  By 
definition, it will also be assumed that combination II-1 operates the remaining (1-CC) percent 
of the time interval.  (The combination in which II = 0 corresponds to the null combination or 
the decision to run no pumps).  Modification of the original objective function to accommodate 
the proposed formulation yields the following objective function: 
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The objective function as expressed in Eq. 24 is subject to the same three sets of 
constraints as with the previous explicit formulations.  These include:  (1) a set of implicit 
system constraints, (2) a set of implicit bound constraints, and (3) a set of explicit decision 
variable constraints.  While both the implicit system and bound constraints will have an 
identical form as before, the explicit decision variable constraints are different for the new 
formulation as a result of the use of a new set of decision variables.  In this case the decision 
variable for each pump station for a particular time interval will be restricted between a lower 
value of zero (corresponding to no pumps in operation) and an upper value related to the 
maximum number of pump combinations available for that pump station.   

In applying the proposed algorithm to a specific distribution system, the desired operating 
horizon (typically 24 hours) is once again divided into a discrete set of time intervals.  A 
separate decision variable for each time interval is then assigned to each pump station.  To 
initiate the algorithm a separate vector for each time interval is randomly generated or 
explicitly specified which contains the values of the decision variables for each pump station in 
the system.  As a result, any potential solution will consist of a set of N vectors where N – the 
number of time intervals which constitute the operating horizon.  To insure a feasible solution, 
the initially specified or generated set of decision vectors must satisfy the explicit bound 
constraints. 

Similar to the previous explicit control formulations, the proposed composite formulation 
also uses a disaggregated solution methodology.  That is, once an initial set of decision vectors 
is obtained, it is then passed down to a network simulation model [20] for use in explicitly 
satisfying the implicit system constraints and for use in evaluating the implicit bound 
constraints.  The values of the resulting state variables (i.e. flowrate, pressure, kilowatt 
consumption, etc.) are then passed back to the optimization algorithm for use in quantifying the 
objective function and identifying any violations in the implicit bound constraints.  This 
information is then used to generate an improved set of decision vectors which automatically 
satisfies the explicit bound constraints and which seeks to minimize the objective function.  



Once generated, the improved set of decision vectors is then passed back down to the 
simulation algorithm for subsequent evaluation.  This process is then repeated until a specified 
level of algorithmic convergence is obtained. 

To permit increased model flexibility, the computational time interval used in the 
simulation model is not restricted to be equal to the interval associated with the decision 
variables.  For example, if a 12 hour time interval is used for the decision variables a much 
smaller time step (i.e. 2 hour, 4 hour, etc.) can be used as the time interval in the simulation 
model. 

 
5. Solution Methodologies 

Various optimization methods have been employed by researchers in solving the discrete 
explicit pump scheduling problem.  These methods have varied from traditional gradient based 
methods to more exotic evolutionary methods (e.g. genetic algorithms).  More recently Tufail 
[18]  and Tufail and Ormsbee [19] have proposed using a modified and improved version of a 
relatively straightforward direct search method [1].  The approach, called the Shuffled Box 
Complex Method, has a potential advantage over genetic algorithms in that both implicit and 
explicit constraints may be handled directly without the use of a penalty formulation.  Similar 
to genetic algorithms, their method also pursues an optimal solution along multiple 
simultaneous search paths, thereby improving the efficiency of the original method. 

While the composite explicit pump scheduling problem can also be solved using the same 
algorithms discussed above, Ormsbee and Reddy [12] found that the unique nature of the 
problem yields itself to solution via a simple heuristic.  Because of the nature of the selected 
decision variable, the least cost solution to the unconstrained objective function (i.e. Eq. 24) is 
explicitly known.  That is, the least cost solution is one in which no pumps are operated.  As a 
result, the optimization problem reduces to one of finding the set of decision vectors which 
produce solutions on the composite constraint boundaries that are as close to the origin of the n 
dimensional solution space as possible.  For a given initial set of decision vectors an improved 
set may be obtained by simply contracting the scalar values in the vectors toward the origin.  In 
the event that a contraction results in a constraint violation, then the vector that produced the 
constraint violation can be subsequently expanded until a feasible solution is obtained.  By 
continuing to bisect the resulting search vector, a set of decision variables can be obtained 
which will result in a solution which lies just on the constraint boundary.  In the event the 
initial solution violates an implicit bound constraint, then the solution may be expanded away 
from the origin along the resulting search direction until a feasible solution is obtained.  Due to 
the nature of the explicit bound constraints, a feasible solution will eventually be found. 

It should be recognized that application of such an approach will only result in the best 
solution that lies on the search direction located between the given initial solution and the 
origin of the dimensional solution space.  However, additional feasible solutions may be 
obtained by simply replicating the methodology using additional sets of initial decision vectors.  
Once the final set of feasible solutions is obtained an “optimal” solution may be obtained by 
simply selecting the best solution from among the resulting feasible solutions. 

More recently, Teegavarapu et al. [17] combined the general search heuristic with a 
genetic algorithm (GA) by using the GA to continue to generate a new set of potentially 
feasible solutions.  Once again, the algorithm is restricted to that class of problems where the 
unconstrained optimal solution is known (e.g. where all the pump operating times are zero).  In 
this case, once the new population of solutions is generated, each solution is checked for 
feasibility.  Those solutions that are not feasible are projected up to the constraint boundary 



from below while those solutions that are feasible are now projected down to the constraint 
boundary from above (Figure 7).  This will then insure that each offspring in the current 
population is both  feasible and locally optimal (e.g. relative to the vector that originates from 
the origin of the solution space).  Once these solutions are generated, the GA is now engaged 
and a new population is generated (Figure 8). Once again, some of these solutions will be 
feasible and some will be infeasible.  As before, both sets of solutions are projected to the 
constraint boundary, and the process is continued (Figure 9). Eventually, the GA will drive the 
solutions to that region on the constraint boundary that is closest to the origin of the solution 
space and thereby yield an optimal solution. (Figure 10). 
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Figure 7. Projection of Initial Solutions to Constraint Boundary (2 dimensional example) 

 

X2

0 2010 5030 40 60 X1

Objective 

Function Contours

2nd Generation

Population

Constraint

Boundary

 

Figure 8. Generation of New Population (2 dimensional example) 
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Figure 9. Projection of 2nd Round Solutions to Constraint Boundary (2 dimensional example) 
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Figure 10. Collapse of Nth Round Solutions to Optimal Solution (2 dimensional example) 

 



6 Summary 

Three different explicit formulations of the optimal pump scheduling problem have been 
presented.  The resulting formulations may be solved by using either unconstrained methods 
along with penalty terms or constrained methods that explicitly incorporate the constraints via 
the mechanisms involved in the algorithm.  In either case, the implicit system constraints can 
be solved directly using an external simulation program which is linked to the optimization 
algorithm via subroutine calls.  Given the complexity of the system being modeled (i.e. water 
distribution systems), it is felt that the provided formulations as well as the explicitly 
constrained GA may have applicability to other complex scheduling problems as well. 

7 References 

1. Box, M. J. A new method for constrained optimization and a comparison with other 
methods. Computer Journal, Vol. 8, No. 1, 42-52 (1965). 

2. Brion, L., M., Methodology for Optimal Pumping Stations in Water Distribution 
Systems,” Ph.D., Dissertation, University of Texas at Austin (1990). 

 
3. Carpentier, P., and G. Cohen, "Decomposition, Coordination and Aggregation in the 

Optimal Control of a Large Water Supply Network," Proc. of the 9th Triennial IFAC 
World Congress, Budapest, pp. 3207-3212, (1984). 

 
4. Chase, D., V., “A Computer Program for Optimal Control of Water Supply Pump 

Stations: Developing and Testing,” USACERL Technical Report N-90/14, U.S. Army 
Corps of Engineers, Construction Engineering Research Laboratory, Champaign, 
Illinois, pp. 1-99 (1990). 

 
5. Chase, D., and L. Ormsbee, "Optimal Pump Operation of Water Distribution Systems 

with Multiple Storage Tanks," Proceedings of the Amer. Water Works Association. 
Computer Specialty Conf., Denver, CO, pp. 205-214 (1989). 

 
6. Chase, D., and Ormsbee, L., "An Alternate Formulation of Time as a Decision Variable 

To Facilitate Real-Time Operation of Water Supply Systems", Proceedings of the 18th 
Annual Conference of the ASCE Water Resources Planning and Management Division, 
New Orleans, LA, pp. 923-927 (1991). 

 
7. Coulbeck, B., "Optimisation of Water Networks," Transactions of the Institute of 

Measurement and Control, Vol. 6, No. 5, pp. 271-279 (1984). 
 
8.  DeMoyer, R., and L. Horowitz, A Systems Approach to Water Distribution Modeling 

and Control, Lexington Books, pp. 143 (1975). 
 
9. Lansey, K., and Q. Zhong, "A Methodology for Optimal Control of Pump Stations," 

Proceedings of the ASCE Water Resources Planning and Management Specialty 
Conference, Fort Worth, TX, pp. 58-61 (1990). 

 
10. Ormsbee, L.E. (1985). “OPNET: A Nonlinear Algorithm for Hydraulic Networks”, 

Proceedings of the ASCE Water Resources Planning and Management Conference: 
Computer Applications in Water Resources, Buffalo, New York,  pp. 739-748 (1985). 



11. Ormsbee, L.E., and Lansey, K.E., "Optimal Operation of Water Distribution Systems, 
ASCE Journal of Water Resources Planning and Management, Vol. 120, No. 2, pp. 237-
252 (1994). 

12. Ormsbee, L.E., and Lingireddy, S. L., "Nonlinear Heuristic for Pump Operations," ASCE 
Journal of Water Resources Planning and Management, Vol. 121, No 4, pp. 302-309 
(1995). 

13. Ormsbee, L.E., Walski, T., Chase, D., Sharp, W., “Methodology for Improving Pump 
Operation Efficiency,” ASCE Journal of Water Resources Planning and Management, 
Vol., 115, No. 2, pp. 148-164 (1989). 

14. Ormsbee, L., Reddy, S., and Chase, D., "Comparison of Three Nonlinear Control 
Algorithms for the Optimal Operation of Water Supply Pumping Systems, Proceedings 
of the International Conference on Integrated Computer Applications for Water Supply 
and Distribution, Leicester, England, pp. 259-271 (1993). 

15. Ormsbee, L., and Reddy, S., "Pumping System Control Using Genetic Optimization and 
Neural Networks," Proceedings of 7th IFAC/IFORS/IMACS Symposium on Large Scale 
Systems:  Theory and Applications, London, England, (1995). 

16. Sabet, M., and O. Helweg, "Cost Effective Operation of Urban Water Supply System 
Using Dynamic Programming," Water Resources Bulletin, AWRA, Vol. 21, No. 1, 
pp. 75-81 (1985). 

 
 17. Teegavarapu, R., Bradley, S., and Ormsbee, L., “Probabilistic Goal Driven Watershed 

Management”, Proceeding of the World Environmental and Water Resources 
Congress, Tampa, May 15-19, (2007). 

18. Tufail, M., Optimal Water Quality Management Strategies for Urban Watersheds 
Using Macro-Level Simulation Models Linked with Evolutionary Algorithms, 
Submitted in Partial Fulfillment of the Doctor of Philosophy Degree, University of 
Kentucky, Lexington, Kentucky, 40506 (2006). 

 
19. Tufail, M., and Ormsbee, L.E., “Optimal Water Quality Management Strategies for 

Urban Watersheds Using Macro-Level Simulation and Optimization Models, ASCE 
Journal of Water Resources Management, Vol. 135, No. 4, pp. 276-285, (2009). 

20. Wood, D. J., User’s Manual – Computer Analysis of Flow in Pipe Networks Including 
Extended Period Simulations, Department of Civil Engineering, University of Kentucky, 
Lexington, KY, (1980) 

21. Zessler, U., and U. Shamir, "Optimal Operation of Water Distribution Systems," 
ASCE Journal of Water Resources Planning and Management, Vol. 115, No. 6, pp. 
735-752 (1989). 


